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Abstract

• Background. This paper explores associations of
computer compromise events in relationship to web
browsing activity over a population of computers.

• Aim. Our hypothesis was that computers are more
likely to be compromised in comparison to other
computers when the computer regularly browses to
web sites prior to other computers visiting the same
site (early adopters) or browses to unique web sites
that no other computer visited (unique adopters) in
a given time period.

• Method. Web proxy data and associated computer-
specific compromise events covering 24,000+ com-
puters in a contiguous 6 month time period were
used to group computers in various adopter cate-
gories and compare potential compromise events
between the groups.

• Results. We found distinction in web surfing be-
havior, in some cases differentiating the chance of
compromise from 2.5-fold to over 418-fold between
certain adopter categories. However, the study also
showed no additional value in predicting compro-
mise using these more complex adopter categories
when compared to using simple unique web activity
counts. As additional contributions, we have char-
acterized several large, real-work cyber defense rel-
evant data sets and introduced a method for simpli-
fying web URLS (client web requests) that reduces
unwanted uniqueness from dynamic content while
preserving key characteristics.

• Conclusions. We found that a count of unique web
visits over time has the same level of predictive
power for potential compromise as does the more
complicated web adopter model. Both models have
better than chance levels of prediction but also re-
inforce the idea that many factors beyond elements
of web browsing activity are associated with com-
puter compromise events. Nonetheless, our adopter

model may still have value in objective computer
risk determination based on web browsing behav-
ior.

1 Introduction

Using a web browser application on a computer to query
and fetch information from the Internet is a primary and
regular activity for many computers within an organi-
zation. Unfortunately, web browsing is also a primary
vector for a computer to become compromised by ma-
licious entities. According to Symantec’s 2011 Internet
Threat Report, web-based attacks have increased by 36%
compared to 2010 with over 4,500 new attacks every
day; additionally, 39% of all email-based attacks used
a web link within the email as the malicious vector [26].
Given this concerning situation, methods for differentiat-
ing web browsing behavior across an organization that is
benign versus that which increases the risk of computer
compromise is of particular relevance and use.

The focus of the work presented in this paper is on
improving the security of all computers as a comprehen-
sive system within an organization. We assume that com-
promises, originating from the Internet through a variety
of mechanisms, occur at a low but continuous rate for
all significantly-sized organizations. In addition, we as-
sume that the contemporary organization’s goal for cy-
ber security is to rapidly detect and then reduce the fre-
quency and damage caused by these Internet-originating
compromise events. Note that this assumption is differ-
ent than the traditional philosophy of the cyber Maginot
Line with maximization of the perimeter and assumption
that any breach is failure. The work we present in this pa-
per is about learning from ongoing compromise-oriented
activity across a large, coherent population of computers
to manage and minimize future malicious activity to the
aggregate population. It is not about how to improve the
protection of individual computers in isolation.

Our work demonstrates that risk of compromise is not
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uniform across a set of computers (representing users).
We find that, indeed, there are patterns of risk when com-
puters exhibit certain web browsing behavior over time.
We also find that a simple quantity of web activity (the
number of unique web locations visited) may have an
equivalent association and provide the same predictive
capability as the more complicated adopter models we
explore below.

In this paper we begin with an overview of existing re-
lated and relevant research. We then present a model for
describing web access behavior across a population of
computers. Next we define a variety of data sources used
for validating this model including some useful charac-
teristics in large-scale web browsing traffic and relevant
compromise indicating data sets. We also propose data
reduction and normalization processes to help allow bet-
ter comparison and analysis. These data sets are then
used to explore the model. We conclude the paper with
a discussion of applications for our models, shortcoming
of our approach, and future directions for using the data
and outcomes of this study.

2 Related Work

A variety of work has been done to characterize web
browsing behavior and activity. Many focus on various
means of content and search classification. Kumar et al.
provide a large-scale study of web browsing content clas-
sification using a one week data sample collected from
browser toolbar searches [18]. A variety of others look
at content classification, general browsing patterns and
content valuation [1, 2, 19]. Another area of research
has been on re-visitation of web content and understand-
ing how often and perhaps why users are returning to
the same or similar content [14, 5, 27]. All of this re-
search focuses on single users and not necessarily infor-
mation spread between users. Most of the research, to
varying levels, found significant re-visitation of web lo-
cations and content by users. No research was found that
explicitly examines a single large-scale organization over
many months in terms of web browsing behavior quan-
tification. We note that our behavior modeling is focused
on the activity external to the computer and not tradi-
tional on-computer behavior modeling seen in existing
research [11].

Additionally, a variety of research exists in web-based
compromises, methods, and understanding. Provos et
al. provide a well cited, comprehensive overview of
recent web attack methods and the significant volumes
of malware seen on the web [24]. Their results on
over 4.5 million URLs showed 10% as malicious. A
slightly older study by Mushchuck et al. show similar
results over a smaller set of URLs; 13.4% of web down-
loaded executable content being malicious and 5.9% of

dynamic (script) web content being malicious [22]. An-
other study by Provos et al. shows that 1.3% of Google
searches returned at least one URL result that was mali-
cious [23]. Note that this malicious content is not hosted
by Google’s site but is instead on the sites presented by
Google in the research results.

The work by Moore et al. provides some interesting
and relevant time frames for how long web sites serv-
ing malicious content exist before take-down events oc-
cur [21]. Their study shows that phishing-oriented web
sites existed for an average of 58 hours before take-down
but had long-lived sites as well, producing a lognormal
distribution and a median of just 20 hours. They also
imply the difficulties of just blocking and blacklisting
web locations as a solution to defending against mali-
cious web content given the variable nature and ease at
which web locations are changed.

Ma et al. propose a machine learning approach to
determining malicious web content solely through the
URLs and a variety of associated, non-content attributes
(WHOIS and similar data) [20]. Using a sample of ap-
proximately 30,000 known benign and malicious web-
sites (URLs) from several sources, they showed a 95-
99% accuracy in determining malicious content. Inv-
ernizzi et al. demonstrate an efficient approach for de-
termining and finding malicious web content throughout
the Internet using attributes from existing malicious web
locations to help narrow the search [15].

Hein et al. provide an overview of contemporary
attacks against web browsers and mitigation strate-
gies [13]. Their paper describes several mechanisms of
how exploits are injected into web browser clients with-
out direct user knowledge and both infrastructure and
browser improvement mitigation techniques. They end
the paper by proposing a crowd-sourced trust model that
allows web browsers to determine potential harm of con-
tent based on others’ prior experience. A variety of novel
approaches to the traditional detection of malware deliv-
ered through the web continue to be developed [4, 17].
Grier et al. show an interesting ability to determine the
root (actual) source of malicious content that attempted
to compromise a web browser as a function of their pro-
posed browser [12]. Davis et. al demonstrate the use
of time series data to present web access volumes before
and after publicized cyber incidents to determine the ef-
fects of incidents on activity by the public to the web
site [7].

Few validated methods for objectively determining
risk with a computer based on activity or behavior exist.
In contrast, existing research focuses on the behavior of
computer attackers themselves and not on the recipient’s
perspective [6]. Unfortunately, quantifiable methods of
validation are lacking in much of the related, existing re-
search [28]. An objective, data-driven approach to de-
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termining risky behavior is of particular importance to
large-scale cyber defense [10]. We believe this approach
is a key aspect of the model presented and discussed be-
low.

3 Approach

In this section, we introduce our model for describing
web access behavior across a population of computers.
It assumes a source of historical web access logs repre-
senting the population of computers. Internet-accessing
web proxy logs are a common source of such data for
large organizations.

Our web adopter model (WAM) hypothesis is in-
spired by Rogers’ sociological model of technology early
adopters and the repetitive mechanisms through which
new technologies expand gradually to a larger group of
adopters [25]. This technology adoption model can be
succinctly described as follows: When a new technol-
ogy becomes available, a subset of the populace (risk-
taking and technology-centric individuals) quickly adopt
the technology. With increasing propagation, a larger set
of individuals follow in adoption, but with an assumed
lower risk (since any problems were worked out by the
earlier adopters). This process and the role individuals
play within the process is generally static from one re-
lated technology to the next in terms of propagation dis-
tribution, speed, and path.

When applied to Internet web browsing behavior, we
find that indeed there are well-defined patterns when
computers (representing users) adopt specific web loca-
tions over time. We find this behavior, in combination
with the count of unique web locations accessed by the
computer, does have statistical power for predicting the
risk of compromise. In particular, when we look at spe-
cific subclasses of compromises, there is a strong asso-
ciation between web adopter behavior and probability of
compromise.

WAM specifically distinguishes three classes of web
adopter behavior that we show associate well to risky and
non-risky behavior. The first adopter type we refer to as
unique adopter (UA) behavior. The UA behavior applies
to computer access events to Internet web locations that
are unique accesses within the computer population and
time frame considered. The second type we call early
adopter (EA) behavior, which are those computers ac-
cessing web locations in a well-defined time period be-
fore other computers within the population also visit the
web location. The final type we define as mainstream
adopter (MA) behavior. MA behavior occurs when a
computer accesses a web location that is common in the
computer population and it would be impossible to dis-
tinguish EA behavior; for example, much of the com-
puter population visits http://google.com. These be-

havior classifications are applied to each unique web ac-
cess that a computer makes over a time period and drives
overall labeling of the computer’s browsing behavior.

We now describe WAM more formally.
Given a set of all unique web locations W (Section 4.1

defines web locations), over a time period T , each unique
web location χ is associated with an unevenly spaced
time series (USTS) [9] of access events. The USTS has
N elements over time period T beginning at Tstart and
ending at Tend .This USTS is a sequence of value pairs
of the first access time by a computer and the identifier
(name) of the computer (t,C):1

Wχ = (t1,C1), ...,(tN ,CN)

s.t. Tstart ≤ t1 ≤ t2 ≤ ...≤ tN ≤ Tend .

Note that any subsequent accesses by an individual com-
puter C to the same web location χ are not within the
USTS Wχ ; only the first access by that computer to the
web location are included.

We define a single element set containing computer C
as an UA set, {(C1, ...,Cn)}, to web location χ when C
was the only computer to access the location in the time
period T :

UAχ = {C : Wχ = {(t,C)}}.
Similarly, we define a set of computers {C1, ...,Cn} as

an EA set to web location χ when set members are the
first to access χ in the time period T ; at least three com-
puters accessed χ; and the EA set accessed χ at least 24
hours prior to at least one additional computer accessing
χ (not in the EA set):

EAχ = {Ci :(ti,Ci) ∈Wχ ,

|Wχ | ≥ 3,
∃(tk,Ck) ∈Wχ s.t. ti +24 hours ≤ tk}.

The 24 hour time separation between early adopters
and non-early adopters (visitors) is based on observation
of the data set. Figure 1 shows the distribution of time
between the early adopter(s) and subsequent adopters.
Note the well-defined time steps between the set of early
adopter(s) and the subsequent computers that access the
web location. Specifically, we find that the time sep-
aration generally falls on well-defined time boundaries
of 1 day (24 hour) increments. Our speculation is that
this reflects human behavior and the propagation of in-
formation about the web location from the early adopter
population to the subsequent adopters. It provides a use-
ful boundary between early adopters and the rest of the
adopting population of a web location. In addition, it

1Most cyber security relevant data sets are at one second resolution
and events within the same second are randomly ordered within that
second, otherwise the sequence is strictly ordered in time.
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Figure 1: The empirical distribution of the time difference in days between the set of EA computers EAχ and the
additional adopters (computers who accessed it) of all web locations χ in our web data set. Note the step at well-
defined boundaries of day intervals. Note the graph is log scale on the y-axis.

was important to allow for multiple early adopters, as
can obviously occur. A good example of multiple early
adopters would occur with a phishing email containing a
web link that multiple receiving users then clicked soon
after receiving it.

The top 1 percentile of web locations by number of
unique accesses represents over 90% of all successful
web access events, as detailed in Section 4.1. While the
top percentile was chosen subjectively, it provides a use-
ful differentiator for particularly common locations like
google.com versus the rest of the web locations. We
define �, the set of lengths for all Wχ (number of unique
accesses for all χ):

L = {|Wχ |∀χ}.
Let p99(L ) be the 99th percentile of L . We now de-

fine Λ as the set of web locations χ that are in the 99th
percentile or above in terms of unique access length:

Λ = {χ : |Wχ | ≥ p99(L )}.
Finally, we define a set of computer {C1, ...,Cn} as a

MA set to web location χ when the web location is in the
set of most accessed web locations Λ:

MAχ = {C : (t,C) ∈Wχ ,χ ∈ Λ}
When applied to Internet web browsing behavior, we

find that indeed there are well-defined patterns of web lo-
cation adopter behavior for specific unique requests over
time. In addition, we find web adopter behavior does

have an association to riskier behavior relating to com-
promise in our data sets. In particular, when we look at
specific subclasses of indicators of compromise (IOC),2

there is a strong association between adopter behavior
and probability of compromise. The results of the model
in conjunction with IOC events are discussed in Sec-
tion 5.

4 Data

Several sources of data were collected and analyzed for
the purposes of validating and analyzing WAM. The data
sets collected are from Los Alamos National Labora-
tory’s (LANL’s) organizational user networks over a pe-
riod of 6 months during 2011 and uses activity data col-
lected from 5 primary sources:

• Web locations: 6.4 billion outbound web proxy
log entries representing Internet web requests from
24,292 computers.

• Antivirus: 306,135 antivirus log entries from
approximately 18,000 Microsoft Windows-based
computers.3

2An IOC is often also referred to as an intrusion detection or com-
promise signature in much of the related research.

3The count is approximate due to computers only reporting events
and an exact inventory of computers with the antivirus reporting agent
was not available. The additional 6242 or so computers seen in the
web proxy logs are non-Windows computers or Windows computers
with custom configurations that do not report antivirus data.
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Figure 2: The empirical distribution by number of unique client computer accesses to unique normalized web locations
over the 6 month time period. Only data for the 1,000,664 web locations that had three or more unique client visits is
shown. The top 1% of web locations are still included in this representation. Note the graph is log scale on the y-axis.

• IR: 1256 Internet-intrusion incident response ana-
lyst tickets from LANL’s incident response capabil-
ity.

• Phishing 44,550 normalized web locations known
for serving phishing-based malware derived from
public Internet sources.

• Proximity: 19 normalized web locations derived
from time proximity across two or more computers
with existing and time-relevant IOC events.

More specific dates of the data analyzed are not dis-
closed to reduce the likelihood that an adversary could
use the information presented in this paper for inappro-
priate purposes.

4.1 Web Location Access Events

For the first data set, the outbound HTTP proxy logs
were analyzed. Using only successful GET and POST
requests (and excluding CONNECT and others), this ac-
counts for 6.4 billion individual web page request records
over the 6 months from the 24,292 LANL computers.
However, many of these requests are unnecessarily spe-
cific and redundant so we therefore normalize them.

A normalized HTTP web request has a somewhat
complex definition as used in this paper. Most simply
stated, it is a client computer’s first successful request
for a given file extension or file type from the base do-
main of the source server. This simplification allows us
to condense the web request events that are overly unique

due to load balancing servers or dynamically generated
client-specific paths and file names; and to reduce the va-
riety of file types possible (e.g. x-pdf and pdf resolve
to the same type), but still retain some distinction of dif-
ferent file types coming from a web domain.

More specifically, the normalized web request uni-
form request locator (URL) is substantially shortened
to include just the base 2-tuple of the server’s domain
(or 3-tuple in the case of two letter country code suf-
fix or first two octets of the IP address if no domain).
The URL’s path is then replaced with just the file exten-
sion or MIME type if there is no file extension. Given
these changes, the normalized web request becomes:
http://aaa.com/pdf or http://aaa.com.au/html
(we call these “web locations” and define them individ-
ually as χ). When reduced, this accounts for 3,942,541
normalized unique web locations (site and type pairs).

Borders et al. provide an intriguing, though more com-
plex, method of dealing with the dynamic URL’s gener-
ated by dynamic web content to enable site comparison
and analysis [3]. Unfortunately, their method also re-
quires elements of content beyond just the URL. Their
intended use was also quite different than ours.

Even with this normalization, the breadth of unique-
ness of the web sites is noteworthy: 2,389,586 (60.6%)
of the normalized sites during 6 months are unique (only
one client computer accesses it); 552,291 have two dif-
ferent client’s requesting them; and 1,000,664 with three
or more. We believe this high uniqueness is primarily
the result of two factors: load balancing of server con-
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Figure 3: The empirical distribution of the 24,292 internal computers and the number of unique normalized web
locations each has accessed over the 6 month time period. Note the graph is log scale on the y-axis.

tent and dynamic locations generated by dynamic con-
tent. Our normalization process attempts to combine
location-related content, while still allowing some dis-
tinction through file type differences. Figure 2 shows the
empirical distribution of clients visiting normalized web
locations with 3 or more clients.

On the other end of the distribution, a vast majority of
requests are made to a relative minority of unique loca-
tions on the Internet. For example, requesting the web lo-
cation http://google.com/html occurs from 19,800
of the 24,292 total computers during the 6 months.4 We
find that the top 1 percent of web locations (39,424 web
locations) in the month’s traffic have 108 or more re-
quests from distinct client computers. We make the as-
sumption that this top 1% represents the most popular in-
formation on the Internet for LANL computers. In fact,
we find that this set of web locations represents over 90%
of the total web access traffic in the 6 months. While
compromise is not impossible from these top locations,
it is improbable and when it does occur, it is quickly and
publicly mitigated. Thus for the purposes of this work,
we exclude the data from these top 39,424 normalized
web locations. Normalization and removal of these web
locations reduces our data set to 3,903,117 unique web
locations.

Figure 3 shows the empirical distribution of computers
to the number of unique normalized web locations each
accessed over the 6 months. Observe the extremely high

4In terms of all requests (not just the first one by a given computer),
http://google.com/html represents 7,124,661 or 1.5% of all web
traffic over the 6 months.

number of unique web requests that exist for some web
locations and the value in removing these few extremes
for comparison purposes across the rest of the web loca-
tions. The average number of web locations that a com-
puter accessed in the 6 months was 1565 with a standard
deviation of 2043. The minimum was 1 web location and
the maximum was 36,896. The median number of web
locations accessed was 91.

4.2 Compromise Events

As previously stated, compromise data over the 6 month
time period comes from two sources: the individual
antivirus logging of approximately 18,000 Microsoft
Windows-based computers and the incident response
(IR) tickets for intrusions from LANL’s incident re-
sponse capability. During the 6 month time period, 848
computers, in 306,135 individual (and often repetitive)
events, reported having the local antivirus engine detect
malware. From analysts, 1256 unique IOC ticket events
involving 401 computers were recorded during the time
period.

In terms of compromise and intrusion detection, most
methods of detection are an existence IOC that does not
contain information regarding source or method of com-
promise. For example: an antivirus engine can detect
that a piece of malware is on a computer as part of a
nightly file check, but would not indicate how the mal-
ware came to be on the computer. Likewise, incident
response tickets will indicate that a computer has been
found to contain malware (perhaps it was unexpectedly
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Figure 4: Chart comparing the unique normalized web
locations in the 6 months (T ) by type. Unique adopters
are those web locations with exactly one client computer
visiting during the 6 months where |Wχ |= 1. 2-adopters
are those locations with exactly two unique client com-
puters, |Wχ |= 2. Early adopters are web locations χ are
those locations where |EAχ | ≥ 1. Mainstream are web
locations χ that account for the top 1% of unique visits
by count where |MAχ | ≥ 1. Finally, those sites that have
3 or more visitors but do not meet the conditions as an
EA or MA containing location are labeled as Other.

beaconing to the Internet), but again does not indicate
how the malware came to be resident on the computer.
IOCs also contain an inherent level of error and more ac-
curately they are indicators of potential compromise with
often high and unquantified levels of false indication.

False positives likely do exist at some level within the
two IOC data sets due to the inaccuracies of antivirus
engines and IR investigations that did not associate to an
actual intrusion. In addition, an unquantifiable number
of malware events likely also exist within the 6 months
that are not represented within these two data sets (false
negatives). Even with these two limitations, we feel that
this compromise data is particularly valuable and unique
as a data source given its association with actual cyber
intrusion events, as shown in the following results.

4.3 Internet-Published Phishing Websites
Publicly available malware-serving website lists for
phishing attacks were used to generate another data
set of potential IOC events for relational purposes.
12,863,857 and 1,447,310 unique, malware-serving
URLs were retrieved from malwaredomainlist.com

and phishtank.com, respectively on September 5,

2012. These URLs were then reduced to 44,550 unique
normalized web locations using the same method de-
scribed above for web proxy data. None of these
phishing-based malware web locations matched the top
1% of web sites previously described (mainstream). The
substantial reduction in URLs points to the significant
reuse of base sites for serving malware. Obviously, such
reduction does introduce the risk of false positive match-
ing in this data set, though for the purposes of our study
we believe it does not significantly impact the results.
Of the 44,550 web locations, 4411 were seen within the
6 months of LANL’s web request data. Of course, ac-
cessing a web location known to contain phishing-related
malware does not mean guaranteed compromise but it is
definitely risky behavior and we consider it to be a po-
tential IOC.

4.4 Time Proximity to Existing IOC Events
The final IOC-related data set uses the web location
USTS sets to determine IOC events of interest. This
approach combines the time line of successful website
accesses (or downloads) for each client computer with
the time line of IOC events that also occurred for the
computer. It then considers suspect any website accesses
within a 24 hour time period before or after an IOC event.
If two or more computers consider a website access sus-
pect due to time proximity with an IOC, the website ac-
cess is considered a potential IOC. In our data set, when
the website access is seen by 3 or more computers in
association with an IOC, we find no false positives–the
website location has been found to always be a source of
malicious activity. Additional details and the results of
this IOC detection method can be found in [16].

5 Results

Using WAM, as described in Section 3 and the data
sources described in Section 4, we now discuss results.

To provide a sense of how the adopter types are dis-
tributed, Figure 4 shows the ratios of each adopter type
by web locations in the normalized web access data set
over the 6 months. As expected, the largest volume of
web locations are associated with UA behavior followed
by web locations that have distinct EA computers. Note
that the 2-adopters in the figure are those web locations
χ where |Wχ | = 2 and can have neither UA or EA asso-
ciated computers, per the definitions. Similarly, “Other”
applies to those web locations that do not have EA or
MA sets, e.g. there are multiple computers accessing it
but none initially more then 24 hours apart or enough to
make it mainstream.

To apply WAM, we take the set of web locations χ
that each computer C accessed from the normalized web
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access data set (W ) over the 6 months, defined as:

WC = {χ : χ ∈W,C ∈Wχ}.

For each web location χ in WC, we apply an label based
on computer C’s membership in one of the various sets
UAχ , EAχ , or MAχ . For each computer C, all web lo-
cations χ in W accessed during T (the 6 months for our
data set) are potentially labeled as UA, EA, or MA re-
spectively.5 The ratios of each of these labels to the total
web location accesses (|WC|) for each computer are then
computed. Figure 5 shows the ratio for each of these la-
bels across the population of computers within the data
set.

Using the four different types of IOC data described
in Section 4, we then label a given computer as being
compromised6 by one or more of those IOC types if the
computer is associated with the IOC type during the 6
months. The four IOC labels, as previously discussed,
are Antivirus (AV), IR, Phishing, and Proximity. While
this is a very coarse labeling of compromise over a poten-
tially long period of time, we find that the model yields
interesting results and suspect that more fine grained la-
beling would improve the model’s fidelity and usefulness
(with significantly higher data and computation costs).

When we consider the set of computers exhibiting any
of these four types of IOC events, we find that the ra-
tios of adopters are rare at the low and high endpoints,
as seen in Figure 6. The lack of low ratios is easily
explained by the notion that computers that do not ac-
cess unique web locations or go to locations as the first
set of visitors (when exploits may more likely exist) are
much less likely to be compromised. While the result is
more difficult explain, we see three explanations for why
high adopter ratios would exist without associated IOC
events:

• High MA ratio computers are very likely to have
few to no compromise events since they only access
very well known and often accessed locations on
the Internet; sites we have previously asserted are
not associated with compromise events.

• For a small set of computers with high UA and EA
ratios, we find they are crawling many, diverse web
locations in an intended automated fashion.

• Somewhat more speculatively, it may be that com-
puters with very high levels of UA and EA activity
are representing users with a higher level of knowl-
edge in avoiding compromise. This idea requires
further exploration to assert or reject.

5Again, note that some locations χ are not labeled since they do not
meet the definitions for the 3 adopter types.

6We assume the logged IOC was correct and not a false positive for
our statistical purposes.

When a computer’s ratio of traffic for UA and/or EA
exceeds 1%, we label that computer as being of gener-
ally type UA and/or EA. We choose the somewhat ar-
bitrary 1% cutoff based on the significant increase that
occurs approximately at this value, as seen in Figure 5.
Similarly, we used a 99% cutoff for a computer to be
labeled as a mainstream adopter; 99% or more of its
accesses to unique web locations χ must be labeled as
mainstream accesses. Using these computer-based la-
bels and the association of computers to the various IOC
events described in Section 4, Figure 7 shows the overall
results of applying WAM using our data sets. The strong
association to potential IOCs relating to computers vis-
iting phishing labeled web locations is particularly no-
ticeable. We assert that phishing and proximity data are
most strongly associated adopter behavior due to their
pure web-based association. In contrast, antivirus and IR
events can occur through other compromise mechanisms
that are not associated with web browsing activity. In
addition, antivirus data is only collected from a subset
of Windows-based computers compared with the larger
set of web browsing computers (18,000 versus 24,000).
Nonetheless, there is still significant association between
all of the IOC types and computers labeled as UA and
EA.

Using these results, we can now estimate probabilities
of an IOC of various types occurring, given a computer C
has one or more of these labels, We define the estimated
probability for an adopter label L as:

P̂(L) =
|L(C)γ |
|L(C)| ,

where L(C)γ is the set of computers {C} with adopter
label L associated with a potential IOC γ during time pe-
riod T and L(C) is the set of computers with adopter la-
bel L. These probabilities for both having and not having
the associated labels can be seen in Figure 8. Note the
particularly high probability of having a phishing IOC
associated with a computer that is both an unique and
early adopter. Also note the extremely low probability
for computers label as mainstream adopters for any type
of IOC–these computers are obviously not the source of
most compromise from the Internet. The UA∨EA re-
sults are not shown due to insignificant differences in the
values and brevity.

One particularly important question about how useful
these adopter types are for predictive methods is whether
these labels are leading or trailing indicators for the dif-
ferent compromise events. We used a coarse method of
dividing the data sets in to two 3 month pieces and as-
signed adopter type labels and IOC labels to each com-
puter independently within the 3 month data sets. Thus,
if a computer had an adopter label in the first 3 months
that drove to an IOC in the second 3 months, we assume
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Figure 5: The empirical distribution of the 24,292 internal computers in terms of the ratio of their individual total
unique web location visits over the 6 months as UA, EA, and MA. Note the graph is log scale on the y-axis.

the adopter label is a leading indicator. Inversely, if an
IOC occurred in the first 3 months that led to an adopter
label in the second 3 months, we assuming the adopter
label was a trailing indicator. If the adopter label and
IOC both occurred in the same three month period, we
call that a (time) local indicator. These indicators are not
mutually exclusive when applied to a computer’s activity
over the 6 months. For example, a computer could be a
leading, trailing, and local indicator if the same adopter
label and the same type of IOC event occurred in both 3
month time periods.

Figure 9 shows the volume of computers showing a
leading, trailing, and/or local indicator for each adopter
label and data set. As is shown, the adopter labels show
association for the antivirus and phishing data sets. How-
ever, the labels for the IR data set are seen more strongly
as a trailing indicator. The high volume of UA and EA la-
beled computers that show association within time local
IOC events shows the strong association to UA and EA
behavior and similar-in-time risky behavior. In contrast,
the lower volume of time local IOC events to MA be-
havior reconfirms the relatively low risk that MA labeled
computers show. This low volume is particularly appar-
ent for phishing IOC’s since, as previously discussed, the
phishing IOC data set does not contain any mainstream
web locations. The combined UA∧EA and UA∨EA sets
were not shown due to insignificant differences in the re-
sults and for brevity of presentation.

While this initial analysis on leading and trailing in-
dicators lacks truly useful granularity, we believe our re-
sults provide some generalized differentiation.

5.1 Application
These differences in distinct risk groups that are repre-
sented in the data can be used to help prioritize and local-
ize the placement of traditional intrusion detection sen-
sors and the sensitivity of these sensors. Placing sensors
at or near MA labeled computers has little value but plac-
ing more sensors near computers that are both labeled as
unique and early adopters has much higher value than
otherwise random placement. More specifically, non-
MA labeled computers have a 10-fold increase in being
associated with any of the IOCs and for the phishing IOC
its a 417-fold increase.

5.2 Regression Model for Prediction
We also tested the significance of the overall model for
statistical fit and predictive viability using logistic regres-
sion. We tested WAM for each computer within the data
set at predicting IOC events against both an intercept (the
null hypothesis that WAM has no effect on compromise)
and using the total unique web location counts. For the
adopter parameters we used the ratio of each adopter type
for each computer to the total unique web location vis-
its for the computer (we did not just use the simplified
adopter labels discussed previously). The adopter pa-
rameters UA, EA, and MA fit the regression model while
other parameters were redundant. Using these three pa-
rameters we find that WAM does much better then the in-
tercept. However, when we use just total unique web lo-
cation counters, we find equivalent predictive power indi-
cating that this simpler counter has significant and equiv-

33



34  LASER 2013 • Learning from Authoritative Security Experiment Results	 USENIX Association

0.001

0.01

0.1

1

0 500 1000 1500 2000 2500 3000 3500 4000

R
at

io
to

C
om

pu
te

r’
s

To
ta

lU
ni

qu
e

V
is

its

Internal Computer (sorted order, plots are independent)

0.001

0.01

0.1

1

0 500 1000 1500 2000 2500 3000 3500 4000

R
at

io
to

C
om

pu
te

r’
s

To
ta

lU
ni

qu
e

V
is

its

Internal Computer (sorted order, plots are independent)

Unique Adopters with IOC
Early Adopters with IOC

Mainstream Adopters with IOC

Figure 6: The empirical distribution of the 3964 internal computers that had any IOC during the 6 months in terms of
the ratio of their individual total unique web location visits as UA, EA, and MA. In comparison to the total population
in Figure 5, note the reduction in computers with no UA or EA ratios and the reduction computers with extremely high
UA, EA, and MA ratios. Note the graph is log scale on the y-axis.

Type Population UA EA UA∨EA UA∧EA MA
Pop. 24,292 14,825 (61.0%) 16,519 (68.0%) 17,453 (71.9%) 13,891 (57.2%) 5213 (21.5%)
AV 848 (3.49%) 685 (80.8%) 726 (85.6%) 747 (88.1%) 664 (78.3%) 63 (7.43%)
IR 401 (1.65%) 323 (80.6%) 337 (84.0%) 346 (86.3%) 314 (78.3%) 40 (9.98%)
Phish 3032 (12.5%) 2975 (98.1%) 2988 (98.6%) 3015 (99.4%) 2948 (97.2%) 2 (0.0662%)
Prox. 19 (0.0782%) 19 (100%) 19 (100%) 19 (100%) 19 (100%) 0 (0.0%)
Any 3964 (16.3%) 3681 (92.9%) 3746 (94.5%) 3801 (95.9%) 3626 (91.5%) 104 (2.62%)

Figure 7: Summary of each of the analyzed data sets and set memberships. For each of the IOC types, the number
computers (and percentage of total IOC-tagged computers) is show as being labeled as UA, EA, either, both, or MA.
To be labeled as UA or EA requires 1% or more of the computer’s total unique web access traffic to be as an UA
or EA (respectively) to web locations. To be labeled as MA, the computer needs 99% or more of its traffic to be to
mainstream defined web locations. Population (Pop.) and Proximity (Prox.) are abbreviated for formatting purposes.

alent statistical predictive capability. In fact, we see that
the adopter parameters, in combination, represent unique
web location visits and individually delineated do not in-
crease predictive capability. In other words, a computer’s
UA, EA, and MA parameters together present that com-
puter’s web behavior that when reduced can be equiva-
lently stated as the unique location visit count; at least in
terms of statistical prediction.

A comparison of predictive power between the two
models is shown in the ROC curve in Figure 10. As seen
in the figure, both the WAM model and the quantity of
unique web locations visited provide better then chance
but are still far from perfect predictors. The lines are
nearly identical, indicating that they likely represent the
same predictive capability. Given the fact that counting

unique web location visits in a time period is much eas-
ier than calculation of the WAM parameters, the obvious
conclusion is that it is simpler and more appropriate to
use the unique visit count as the best predictor of future
compromise behavior by a computer.

6 Lessons Learned

The most significant observation and theme from the re-
search represented in this paper is the importance of sim-
plicity in approach, whenever possible. While it is moti-
vating to gravitate towards more complicated approaches
as good science, we believe that given the relative imma-
turity of the cyber research domain, there is significant
value and importance in the simplest approaches; at least
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Type P̂(UA) P̂(¬UA) P̂(EA) P̂(¬EA) P̂(UA∧EA) P̂(¬(UA∧EA)) P̂(MA) P̂(¬MA)
Antivirus 4.62% 1.72% 4.40% 1.57% 4.78% 1.77% 1.21% 4.11%
IR 2.18% 0.825% 2.04% 0.824% 2.26% 0.837% 0.767% 1.89%
Phishing 20.1% 0.606% 18.1% 0.570% 21.2% 0.810% 0.038% 15.9%
Proximity 0.128% 0.0% 0.115% 0.0% 0.137% 0.0% 0.0% 0.100%
Any 24.8% 3.00% 22.7% 2.81% 26.1% 3.25% 2.00% 20.2%

Figure 8: Estimated probabilities of various compromise types existing given a computer’s membership in the various
defined sets (or not). Using these estimated probabilities or frequencies as a basis for predicting future potential events
occurring in the various populations (sets) assumes that set membership is a viable leading indicator of risky behavior.

Adp. IOC Pop. Leading Trailing Local
UA AV 681 77.8% 52.6% 96.9%
UA IR 312 30.1% 69.2% 93.3%
UA Phish 2809 52.1% 58.4% 99.4%
EA AV 694 78.4% 55.0% 98.3%
EA IR 323 31.0% 70.0% 94.7%
EA Phish 2818 52.8% 59.2% 99.5%
MA AV 88 59.1% 36.4% 67.1%
MA IR 44 36.4% 43.2% 77.3%
MA Phish 47 66.0% 34.0% 2.1%

Figure 9: Trending for each adopter label (Adp.) as to
how often it has a leading, trailing or time local (simi-
lar in time) association to computers observed with each
IOC type. The associations are not mutually exclusive.
The population (Pop.) size represents the number of
computers that have that adopter label in either time pe-
riod and at least one associated IOC event of the given
type over the two 3 month consecutive time periods.

until these direct methods are demonstrated to be insuf-
ficient.

We assert that the regression-based prediction results
we show are an excellent example of Occam’s razor,
where the simpler hypothesis with fewer assumptions
produces equivalent results to the more complex ap-
proach [8]. We have shown that simple web counts pro-
vide equivalence to a much more complex and frankly
better sounding approach.

Another key observation that was initially not ex-
pected in this research was the significant uniqueness
seen within web URLs across the large population of
hosts. This variation drove us to the web location ap-
proach described in Section 4.1 that allowed better URL
grouping, while still enabling some diversity beyond just
domain name. Without this approach, the data analysis
was overwhelmed with one-event URL’s that did not al-
low for multiple adopters except primarily in the Main-
stream group. While we did try more complex methods
to detect and normalize similar URLs (e.g., timestamp
detection and random ID string detection within the URL
string), we found that our simple approach provided an
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Figure 10: ROC curve showing both the fit (and likely
predictive capability) of both early adopter logistic re-
gression and simple unique web location logistic regres-
sion models. The two curves are nearly identical.

equivalent capability with significantly less processing
and complexity. Our final approach is also much easier
to describe and replicate.

Also worth noting, this paper shows the importance of
using real world data in significant volume for effective
hypothesis testing within the cyber domain. Using con-
trived data, WAM could have easily shown predictive ca-
pability stronger then the real data since such testing data
is often modeled from the hypothesis itself. Obviously,
the real data demonstrated a more realistic outcome.

7 Conclusion

The intended purpose of WAM was to define an objec-
tive model that delineates varying behavior according to
the potential risk of compromise within a population of
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computers. Though the simpler web location measure
significantly reduces the overall relevance of WAM, we
believe that the comparison, results, and the WAM model
itself are still useful and important applied cyber security
research.

While there is continued opportunity for improvement
in terms of fidelity and fit, we believe the model we have
presented in this paper presents a newly explored ap-
proach and at least an objective means to judge risky be-
havior. Even more important and rare, this paper uses
a significant real-world data set to validate and quan-
tify the model. WAM demonstrates a model for show-
ing the association of compromise through differentiated
web browsing behavior over a population of computers.
While we also showed the WAM model does not provide
additional predictive capability over unique web location
counts, we have demonstrated the value of this simple
count. Indeed, more web surfing does equate to a higher
chance of compromise.
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